
1	

	

Computers II Lesson 6

6.0 Evolution of Software

Software development does not stop when a system is delivered but continues
throughout the lifetime of the system.

After a system has been deployed, it inevitably has to change if it is to remain
useful.

Business changes and changes to user expectations generate new requirements for
the existing software.

Parts of the software may have to be modified to:

• Correct errors that are found in operation
• Adapt it for changes to its hardware and software platform,
• Improve its performance or other non-functional characteristics.

Software evolution is important because organizations have invested large amounts
of money in their software and are now completely dependent on these systems.

Their systems are critical business assets and they have to invest in system change
to maintain the value of these assets.

The costs of software change are a large part of the IT budget for all companies.

Most large companies spend more on maintaining existing systems than on new
systems development.

Based on an informal industry poll 85–90% of organizational software costs are
evolution costs. Other surveys suggest that about two-thirds of software costs are
evolution costs.

Software evolution may be triggered by:

• Changing business requirements
• Reports of software defects
• Changes to other systems in a software system’s environment.

2	

	

Useful software systems often have a very long lifetime.

Large military or infrastructure systems, such as air traffic control systems, may
have a lifetime of 30 years or more.

Business systems are often more than 10 years old.

Software cost a lot of money so a company has to use a software system for many
years to get a return on its investment.

The requirements of the installed systems change as the business and its
environment change. Therefore, new releases of the systems, incorporating
changes, and updates, are usually created at regular intervals.

You should think of software engineering as a spiral process with the below going
on throughout the lifetime of the system.

• Requirements
• Design
• Implementation
• Testing

You first create release 1 of the system. Once delivered, changes are proposed and
the development of release 2 starts almost immediately. The need for evolution
may become obvious even before the system is deployed so that later releases of
the software may be under development before the current version has been
released.

3	

	

• During evolution, the software is used successfully and there is a constant
stream of proposed requirements changes.

• As the software is modified, its structure tends to degrade and changes become
more and more expensive.

This often happens after a few years of use when other environmental changes,
such as hardware and operating systems, are also often required.

Eventually, at some stage in the life cycle, the software reaches a transition point.

• At this transition point, significant changes, implementing new
requirements, become less effective and more expensive.

The difference between evolution and servicing:

• Evolution is the phase in which significant changes to the software
architecture and functionality may be made.

• During servicing, the only changes that are made are relatively small,
essential changes.

6.0 Lehman’s Laws

A series of laws that Lehman and Belady formulated starting in 1974 with respect
to software evolution.

The laws describe a balance between forces driving new developments on one
hand, and forces that slow down progress on the other hand.

4	

	

These laws are likely to be true for all types of large organizational software
systems

6.1 Software Maintenance

Software maintenance is the general process of changing a system after it has been
delivered.

The term is usually applied to custom software in which separate development
groups are involved before and after delivery.

Changes are implemented by modifying existing system components and, where
necessary, by adding new components to the system.

5	

	

Three different types of software maintenance:

1. Fault repairs - Coding errors are usually relatively cheap to correct; design errors
are more expensive as they may involve rewriting several program components.
Requirements errors are the most expensive to repair because of the extensive
system redesign which may be necessary.

2. Environmental adaptation - This type of maintenance is required when some
aspect of the system’s environment such as the hardware, the platform operating
system, or other support software changes. The application system must be
modified to adapt it to cope with these environmental changes.

3. Functionality addition - This type of maintenance is necessary when the system
requirements change in response to organizational or business change. The scale of
the changes required to the software is often much greater than for the other types
of maintenance.

More of the maintenance budget is spent on implementing new requirements than
on fixing bugs.

Approximate distribution of maintenance costs:

